

Optimizing Snapshot Gallery Presentation of Artificial Intelligence-inferred Diagnostic Cell Images for Urine Cytology Diagnosis

Tien-Jen Liu¹, Wei-Lei Yang¹, Min-Che Tung², Yen-Chuan Ou², Tang-Yi Tsao³, Cheng-Hung Yeh¹, Shih-Wen Hsu¹ and Jen-Fan Hang^{4,5*}

¹AlxMed, Inc., Santa Clara, CA, USA; ²Division of Urology, Department of Surgery, Tung's Taichung MetroHarbor Hospital, Taichung, Taiwan; ³Department of Pathology, Tung's Taichung MetroHarbor Hospital, Taichung, Taiwan; ⁴Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; ⁵ School of Medicine and Institution of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; *Correspondence to JF Hang 🖂 combofkafka@gmail.com

Introduction

- A deep-learning-based AI algorithm has been developed to assist in diagnosis of urine cytology.
- A gallery presentation of Al-inferred suspicious cancer cell images has been designed to improve the effectiveness of digital cytology.
- Gallery presentation allows for a quick review of selected diagnostic cells in the whole-slide image (WSI), which could facilitate diagnosis.
- In this study, different numbers of diagnostic cell images in the gallery were evaluated by cytotechnologists to determine the optimal number of cells for gallery presentation to assist urine cytology reporting.

Materials and Methods

- 90 urine cytology slides were scanned for WSIs, including 45 with high-grade urothelial carcinoma (HGUC) and 45 with negative for HGUC (NHGUC).
- An in-house developed AI algorithm was used to provide risk stratification of suspicious cancer cells for each WSI.
- Diagnostic cell images were selected and displayed in galleries of 12, 24, 36, and 48 images, categorized by cancer risk.
- Two cytotechnologists used an in-house viewer software (Figure 1) to review the cell galleries and render a diagnosis based on The Paris System categories (NHGUC/AUC/SHGUC/HGUC).
- The concordance rate between microscopy and cell gallery diagnoses was evaluated for each WSI.

Cell image in the gallery presented a suspicious cancer cell (in the center) and surrounding cells that may not be suspicious cancer cells (red arrows).

Results

Table 1. Concordance rates between microscopy and snapshot gallery diagnosis

Microscope diagnostic category	HGUC (N= 45)		NHGUC (N= 45)	
Cell image number in a gallery	Concordance rate		Concordance rate	
	Cytotech A	Cytotech B	Cytotech A	Cytotech B
12	46.7%	31.1%	93.3%	91.1%
24	86.7%	71.1%	91.1%	91.1%
36	95.6%	84.4%	91.1%	88.9%
48	91.1%	91.1%	91.1%	88.9%

- rates for HGUC specimens from 31.1% to 91.1%

- gallery of 48 cell images.
- two cytotechnologists.

Increasing the number of diagnostic cells in the gallery improved the concordance

• For NHGUC specimens, the concordance rates decreased from 93.3% to 88.9%.

Cytotechnologist A had the highest concordance rate for HGUC specimens in the gallery of 36 cell images, but the rate slightly decreased in 48 cell images.

Cytotechnologist B had the highest concordance rate for HGUC specimens in the

Conclusion

Galleries of 36 or 48 diagnostic cell images provide the highest concordance rates between digital urine cytology diagnosis and microscopy for cytotechnologists.

• Inter-observer variation in gallery diagnostic results was observed between the

• Further investigation is needed to determine the efficacy of the snapshot gallery in urine cytology diagnosis compared to microscopy and WSI diagnoses.